EBRAHIM

رادار تصويري

امتیاز دادن به این موضوع:

Recommended Posts

چکیده :

رادار يك سيستم الكترومغناطيسي است كه براي تشخيص و تعيين موقعيت هدف بكار مي رود . با رادار مي توان درون محيطي را كه براي چشم ،غير قابل نفوذ است ديد مانند تاريكي ،باران،مه.برف،غبار و غيره . اما مهمترين مزيت رادار توانايي آن درتعيين فاصله يا حدود هدف مي باشد .كاربرد رادارها در اهداف زميني ، هوايي،دريايي، فضايي و هواشناسي مي باشد. ايجاد سيستمي با توانايي بالا در رديابي پديده ها و ایجاد تصاویر با کیفیت بالا از آنها هدف عمده ساخت رادار تصویری می باشد .

مقدمه :

گاه امکان بررسی اجسام از نزدیک وجود ندارد . برای مثال جهت بررسی سطح اقیانوس ها نقشه برداری از عراضی جغرافیایی لزوم ساخت وسایلی که بتوانند از راه دور این کاررا انجام دهند به چشم می خورد . با دستیابی به تکنولو؟ی سنجش از راه دور بسیاری از این مشکلات برطرف گشت . در واقع در این روش امکان بررسی اجسام وسطوحی که نیاز به بررسی از راه دور دارند را فراهم می آورد . سنجش از راه دور رامی توان به دو بخش فعال وغیر فعال تقسیم کرد . گستره طول موج امواج مایکرویو نسبت به طیف مادون قرمز ومرئی سبب گردیده تا از سنجش از راه دور به وسیله امواج از این طیف استفاده گردد .
عملکردسیستم های سنجش غیرفعال همانند سیستم های سنجش دما عمل می کنند .در اینگونه سیستم ها با اندازه گیری انر؟ی الکترومغناطیسی که هر جسم به طور طبیعی از خود ساتع می کند نتایج لازم کسب می گردد .هواشناسی واقیانوس نگاری از کاربردهای این نوع سنجش می باشد .
در سیستم های سنجش فعال از طیف موج مایکرویو برای روشن کردن هدف استفاده می شود . این سنسورها را می توان به دو بخش تقسیم کرد : سنسورهای تصویری وغیرتصویری (فاقد قابلیت تصویربرداری) .

از انواع سنسور های غیر تصویری می توان به ارتفاع سنج واسکترومتر ها(پراکنش سنج ) اشاره کرد .کاربرد ارتفاع سنج ها در عکس برداری جغرافیایی وتعیین ارتفاع ازسطح دریا می باشد .اسکترومتر که اغلب بر روی زمین نصب میگردند میزان پراکنش امواج را ازسطوح مختلف اندازه گیری می کنند . این وسیله در مواردی همچون اندازه گیری سرعت باد در سطح دریا و کالیبراسیون تصویر رادار کابرد دارد .

معمول ترین سنسور فعال که عمل تصویربرداری را انجام می دهد رادار می باشد . رادار(radio detection and ranging) مخفف وبه معنای آشکارسازی به کمک امواج مایکرویو است .به طور کلی می توان عملکرد رادار را در چگونگی عملکرد سنسورهای آن خلاصه کرد . سنسورها سیگنال های مایکرویو را به سمت اهدف مورد نظر ارسال کرده وسپس سیگنال های بازتابیده شده از سطوح مختلف را شناسایی می کند . قدرت (میزان انر؟ی) سیگنالهای پراکنده شده جهت تفکیک اهداف مورد استفاده قرارمی گیرد . با اندازه گیری فاصه زمانی بین ارسال ودریافت سیگنال ها می توان فاصله تا اهداف را مشخص کرد . از مزایای شاخص رادار می توان به عملکرد رادار در شب یا روز وهمچنین قابلیت تصویربرداری درشرایط آب و هوایی مختلف اشاره کرد . امواج مایکرویو قادر به نفوذ در ابر مه ,گردوغبار وباران می باشند . از آنجاییکه عملکرد رادار با طرز کار سنسورهایی که با طیف های مرئی ومادون قرمز کار می کنند متفاوت است لذا می توان با تلفیق اطلاعات بدست آمده تصاویر دقیقی را بدست آورد .

تاریخچه :

اولین تجربه در مورد بازتابش امواج رادیویی توسط هرتز آلمانی در سال 1886 بدست آمد . پس از گذشت مدت زمان کمی اولین رادار که از آن برای آشکارسازی کشتی ها استفاده می شد مورد بهره برداری قرار گرفت . در سالهای 1920 تا 1930 پیشرفت هایی در جهت ساخت رادار با قابلیت تعیین فاصله اهداف صورت گرفت . اولین رادارهای تصویری درطی جنگ جهانی دوم برای آشکارسازی وموقعیت یابی کشتی ها وهواپیماها استفاده شد . بعد از جنگ جهانی دوم راداربا دید جانبی (SLAR) جهت جستجوی اهداف نظامی و کشف مناطق نظامی ساخته شد . اینگونه رادارها با داشتن آنتن درسمت جپ وراست مسیر پرواز قادر به تفکیک دقیقتر اهداف مورد نظر بودند . در سال 1950 با توسعه سیستم های SLAR تکنولو؟ی رادار دهانه ترکیبی ( رادار با آنتن ترکیبی) گامی در جهت ایجاد تصاویر با کیفیت بالا برداشته شد . در سال 1960 استفاده از رادارها ی هوایی وفضایی توسعه یافت وعلاوه برکاربرد نظامی جهت نقشه برداری های جغرافیایی و اکتشافات علمی و... نیز مورد استفاده قرار گرفتند .


اصول رادار :

مهمترین نکته حائز اهمیت در بخش قبل را میتوان معرفی رادار به عنوان وسیله اندازه گیری معرفی کرد . اجزاء تشکیل دهنده سیستم رادار فرستنده , گیرنده آنتن وسیستم های الکتریکی جهت ثبت و پردازش اطلاعات می باشد .
همانطور که در تصویر شماره 1 مشاهده می شود فرستنده پالس های کوتاه مایکرویو (A) را که بوسیله آنتن راداربه صورت پرتو متمرکز می شوند(:D با فاصله زمانی معیین تولید می کند . آنتن راداربخشی از سیگنال های بازتابیده شده (c) از سطوح مختلف را دریافت می کند.
تصویر شماره 1
تصویر
با اندازه گیری مدت زمان ارسال پالس و دریافت پ؟واک های پراکنده شده از اشیاء مختلف می توان فاصله آنها ودر نتیجه موقعیت آنها را تعیین نمود .با ثبت و پردازش سیگنال بازتابیده توسط سنسور تصویر دو بعدی از سطح مورد نظر تشکیل می گردد .


پهنای باند :

از آنجاییکه گستره طیف امواج مایکرویو نسبت به طیف های مرئی ومادون قرمزوسیع تر می باشد لذا اکثر رادار ها از این طیف استفاده می کنند . در رادارهای تصویری اغلب از طول موج های زیر استفاده می شود:
ka&k&ku band
X_band
C_band
S_band
L_band
P_band
تمامی طول موج های استفاده شده در رادارهای تصویری در محدوده سانتیمتر است . طول موج رادار در نحوه تشکیل تصویر موثر می باشد . با افزایش طول موج شاهد تصاویر با کیفیت بهتر می باشیم .در دو تصویر زیر(تصاویر شماره 2و3) از دو طول موج متفاوت استفاده شده است . شما می توانید تفاوت آشکاری را که دراین تصاویر وجود دارد مشاهده نمایید . علت این تفاوت تغییر در نحوه فعل وانفعال سیگنال با سطح اشیاء میباشد که در ادامه درباره این موضوع صحبت خواهد شد .
c-band l_band

تصویر شماره 2
تصویر
تصویر شماره 3
تصویر
قطبیدگی(polarization) :

هنگامی که در مورد امواج الکترومغناطیسی همانند امواج مایکرویو صحبت می گردد بحث درباره قطبیدگی حائز اهمیت می باشد . قطبیدگی عبارت است از جهت میدان الکتریکی در امواج الکترومغناطیسی . به طور کلی می توان قطبیدگی امواج را به سه دسته تقسیم بندی کرد : قطبیدگی خطی و دایره ای وبیضوی .
اغلب رادار های تصویری از قطبیدگی خطی استفاده کرده , که این نوع قطبیدگی را می توان به دو بخش عمودی(vertical) وافقی (horizontal) تقسیم بندی کرد (تصویر شماره4). اغلب سنسورهای رادار طوری طراحی شده اند که قابلیت ارسال وهمچنین دریافت امواج را به یکی از دو صورت بالا دارا هستند . در بعضی از رادارها دریافت وارسال امواج با ترکیبی از دو نوع قطبیدگی انجام می پذیرد .

تصویر شماره 4
تصویر
به طور کلی می توان چهارترکیب از قطبیدگی رادرا در نظر گرفت :
HH
VV
HV
VH
حرف H نشان دهنده قطبیدگی افقی وحرفV نمایانگر قطبیدگی عمودی میباشد . درچهارترکیب بالا حرف سمت راست نحوه دریافت سیگنال را نشان می دهد .

هندسه رادار (radar geometry):

درسیستم تصویربرداری رادار هوایی با جابجانمودن سکو در یک مسیر مستقیم که مسیرپرواز(flight direction)(A) نامیده می شودعمل تصویربرداری انجام میگردد . پای قائم در صفحه تصویر را ندیر(nadir)(:D می نامیم .آنتن رادار امواج را برای روشن کردن نوارتصویر(swath) (C) ارسال می کند . با قرار گرفتن نوارهای تصویر در کنار هم ناحیه تصویر(track) (ناحیه خاکستری رنگ ) تشکیل می گردد که این ناحیه نسبت به خط ندیر فاصله دارد . محور طولی ناحیه تصویرکه با مسیر پروازموازی می باشدرا سمت(azimuth)(E) ومحورعرضی راکه برمسیرپروازعمود است را برد(range)(D) می نامیم .

تصویر شماره 5
تصویر
وا؟ه شناسی :

محدوده نزدیک (Near range): بخشی از نوارتصویر که به خط ندیر نزدیک است .

محدوده دور(far range) : بخشی از نوار تصویر که در فاصله دور نسبت به خط ندیر قرار دارد .

برد مایل (slant range): خط شعاعی که از رادار به هریک از اهداف می توان نظیر کرد .

برد زمینی (ground range ) : تصویر برد مایل در سطح زمین .

زاویه تابش(incidence angle) : زاویه بین پرتورادار و سطح زمین .

زاویه دید(look angle) : زاویه بین خط عمود وپرتو رادار.

تصویر شماره 6
اثرات سطح بر تصویر رادار :

میزان روشنایی ( درخشندگی ) تصویر به میزان پراکندگی(scattering) سیگنال های مایکرویودر برخورد باسطح بستگی دارد . پراکنش سیگنال به پارامترهایی از قبیل مشخصات رادار (فرکانس قطبیدگی هندسه دید و...) وهمچنین خصوصیات سطح (پستی وبلندی نوع پوشش و...) وابسته است . به طور کلی می توانیم عوامل بالا را در سه عامل اصلی زیر خلاصه کنیم :
1) صیقلی بودن سطح
2) هنسه دید و رابطه آن باسطح
3) درصد رطوبت وخصوصیات الکتریکی سطح

صیقلی بودن سطح مهمترین عامل تعیین کننده روشنایی تصویرمی باشد . سطوح صاف موجب بازتابش آیینه ای(A) در فعل وانفعال سیگنال رادار با سطح می گردند . درنتیجه این نوع بازتابش مقدار اندکی ازسیگنال های بازتابیده شده به سمت رادار باز میگردند . بنابراین سطوح صاف با درجه تیره گی بیشتر در تصویر ظاهر خواهند گشت . سطوح ناصاف سیگنال های رادار راتقریبا به صورت یکنواخت بازتاب می دهند . و درنتیجه بخش عمده ای از این سیگنال ها به سمت راداربازمیگردند . بنابراین سطوح ناصاف با درجه روشنایی بیشتر در تصویر مشاهده می شوند . به این نوع انعکاس بازتابش پخشیده(:Dگفته می شود . احتمال وقوع انعکاس زاویه ای (C) در نواحی که از سطوح عمود برهم تشکیل شده وجود دارد. به بیان ساده تر سیگنال های بازتابیده شده از سطح اول پس از برخورد به سطح دوم به سمت رادار بازتاب داده میشود .این نوع انعکاس به طور معمول در مناطق شهری (ساختمان ها خیابان ها پل ها و... ) اتفاق می افتد . صخره ها کوه ها ونیزار رودخانه ها نیز سیگنال رادار را اینگونه بازتاب می دهند .

تصویر شماره 7
تصویر
زاویه تابش(incidence angle) نیز در نحوه شکل گیری تصویر همچنین صیقلی بودن سطوح نقش ایفا می کند . با در نظر گرفتن سطح وطول موج ثابت با افزایش زاویه تابش سیگنال های کمتری به سوی رادار بازمیگردند ودر نتیجه درجه تیره گی افزایش می یابد .به بیان دیگر با افزایش زاویه تابش سطوح صیقلی تر از مقدار واقعی خود در تصویر ظاهرمی شوند .

به طور کلی تغییر در هندسه دید در بهبود نقشه های جغرافیایی وهمچنین برطرف کردن اختلال هایی از قبیل سایه دارشدن و کاهش عمق تصویرموثر می باشد .

وجود رطوبت در خصوصیات الکتریکی وحجم اجسام موثر می باشد . تغییر در خواص الکتریکی در جذب ارسال وهمچنین نحوه شکل گیری تصویر موثر می باشد . بنابراین درصد رطوبت اجسام در فعل وانفعال سیگنال رادارومتعاقبا تصویر موثر می باشد . معمولا با افزایش رطوبت جسم سیگنال های بیشتری توسط جسم بازتابیده می شود . برای مثال علفزارهای وسیع در هنگامی که مرطوب هستند در تصویر رادار روشنتر ظاهر می شوند .


دقت تفکیک(spatial resolution) :

به میزان توانایی رادار جهت تفکیک اشیاء مختلف از همدیگر دقت تفکیک گفته می شود . بر خلاف سیستم های نوری افزایش دقت تفکیک در رادار بر اساس خصوصیات امواج مایکرویو وهمچنین تاثیرات هندسی انجام می پذیرد . دررادارهایی که از یک آنتن جهت ارسال امواج استفاده می کنند یک پالس موج ارسال گشته و با دریافت پ؟واک آن توسط گیرنده تصویر تشکیل می شود .
دقت تفکیک را می توان در دو راستا بررسی کرد . در جهت سمت ناحیه تصویر که دقت سمت (azimuth resolution) نامیده می شود ودر جهت برد که آن را دقت برد (range resolution) می نامیم .

دقت برد به طول پالس رادار (P) بستگی دارد . در صورتی که عمل تفکیک با طول بیشتر از نصف پالس صورت گیرد اهداف از یکدیگر قابل تشخیص اند . برای مثال در شکل شماره 8 اهداف 1و2 در تصویر به صورت یک جسم مشخص شده در حالیکه هدف های 3و4 به راحتی از هم تفکیک شده اند .
با افزایش زاویه تابش (افزایش برد )شاهد کاهش دقت برد می باشیم
تصویر شماره 8
دقت سمت به پهنای ستون امواج رادار یا پهنای زاویه ای (beam width) (A) و همچنین برد مایل(slant range) وابسته است . با افزایش پهنای زاویه ای می توانیم شاهد دقت سمت باشیم . در تصویرشماره 9 اهداف 1و2 که در محدوده نزدیک قرار دارند توسط رادار به راحتی قابل تشخیص اند درحالیکه هدف های 3و4 که در محدوده دور قرار گرفته اند قابل تشخیص نمی باشند . همچنین با افزایش طول آنتن رادار می توان دقت سمت را افزایش داد .
تصویر شماره 9
تصویر
رادار دهانه ترکیبی (synthetic aperture radar):

همانطور که در قسمت قبل گفته شد جهت بالابردن دقت سمت می توانیم طول آنتن رادار را افزایش دهیم . اگرچه در این افزایش طول ما با محدودیت هایی مواجه هستیم . در رادرهای هوایی طول آنتن رادار بین 1 تا 2 متر در نظر گرفته می شود . در ماهواره ها ما می توانیم این محدوده را بین 10 تا 15 متر در نظر بگیریم . با تغییراتی در چگونگی حرکت سکوی رادار وثبت و پردازش سیگنال های بازتابیده شده می توان بر محدودیت اندازه غلبه کرد . بدین طریق که ما با تغییر در نحوه رفتار رادار به صورت مجازی طول آنتن رادار را افزایش داده ایم .
تصویر شماره 10 چگونگی رسیدن به این خواسته را تشریح می کند .

1) ابتداشیءهدف (A)سیگنال های مایکرویو را به صورت پالس دریافت کرده . پ؟واک های هر پالس توسط رادار ثبت می شوند . سکوی رادار در مسیر مستقیم به طور پیوسته در حال حرکت است . در طول زمانی که شیء هدف در معرض پالس های رادار قرار داردعمل ثبت سیگنال های بازتابیده شده از شیءتوسط رادار انجام می پذیرد .2) زمان چندانی طول نمی کشد تا طول آنتن ترکیبی (:) مشخص گردد .
تصویر شماره 10
با افزایش پهنای زاویه ای وهمچنین کاهش سرعت سکو می توانیم دقت سمت را در محدوده دور افزایش دهیم .در نتیجه شاهد ثابت ماندن دقت تفکیک درراستای سمت می باشیم .به تکنولو؟ی فوق که جهت افزایش دقت برد صورت می پذیرد رادار دهانه ترکیبی یا SAR گفته می شود .این روش در اکثررادارهای هوایی وفضایی استفاده می شود .

خصوصیات تصویر رادار :

در تصاویر رادار با نوعی اختلال مواجه هستیم که به نویز اسپیکل(speckle) معروف است . این اختلال که باعث ظاهرشدن دانه های ریزودرشت (بافت فلفل نمکی) در تصویر می شود زاییده ساختار بهم ریخته سطح و همچنین تداخل سیگنال های بازتابیده می باشد . به عنوان نمونه یک سطح هموار مانند علفزار(تصویر شماره 11) را در نظر می گیریم . بدون در نظر گرفتن اثر این اختلال پیکسلهای تصویر با درجه روشنایی یکسان مشاهده می شوند . حال آنکه در تصویر حقیقی به علت تداخل سیگنال های پراکنده شده پیکسل ها دارای درجات روشنایی متفاوت می باشند .
تصویر شماره 11
تصویر

در واقع نویز اسپیکل کیفیت تصاویر راکاهش داده ودر نتیجه درتحلیل تصاویربا مشکل مواجه می شویم .حال برای کاهش این اثر میتوان دو روش را بکار برد :
1) دید چندگانه (multi-looking processing):
در این روش هر پرتو رادار به چندین زیرپرتو (اشعه) تقسیم شده و هر اشعه وظیفه پوشش دادن یک ناحیه را بر عهده دارد . با ثبت تصاویر تشکیل شده توسط هر اشعه ومعدل گیری از آنها جهت تشکیل تصویر نهایی می توان نویز اسپیکل را کاهش داد .

2) فیلترینگ (spatial filtering) :
پس از پایان یافتن مرحله اول وتشکیل تصویر اولیه فیلترکردن تصویر آغاز می شود . در این روش با حرکت دادن یک پنجره متشکل از تعدادی پیکسل (معمولا 5*5 یا 3*3 ) در طی سطر وستون تصویر از پیکسل هایی که هر پنجره پوشش می دهد معدل گیری (درجه روشنایی پیکسل های موجود در هر پنجره اندازهگیری شده وپیکسلی با درجه روشنایی واحد جایگزین پنجره مربوطه می گردد) انجام می شود.
تصویر
تصویر شماره 13

بایستی توجه داشته باشیم که کاهش نویز اسپیکل باعث کاهش وضوح تصویر می گردد . همانطور که درتصاویر شماره 14 و 15مشاهده می شود تصویر شماره 15نسبت به تصویر دیگر دارای وضوح کمتری است . در نتیجه برای ایجاد تصاویر با جزئیات دقیق نمی توان از این روش استفاده کرد . زمانی که سطح هدف را وسیع در نظر بگیریم کاهش نویز اسپیکل می تواند مثمر ثمرباشد .
تصویر
تصویر شماره 14
تصویر
تصویر شماره 15

گاه نیاز به استفاده از اندازه گیریهای دقیق جهت مقایسه مشاهدات وبدست آوردن نتایج لازم می باشد . در نتیجه بایستی دقت دقت ابزار اندازه گیری افزایش پیدا کند . این فعل توسط فرآیندی به نام کالیبراسیون (calibrasion) انجام پذیر است . ازآنجاییکه عمل اندازه گیری از اعمال اصلی رادار می باشد در نتیجه کالیبراسیون بسیار مهم می باشد . کالیبراسیون تلاش می کند تا اختلاف میان مقدار انر؟ی سیگنال بازتابیده با مقدار اندازه گیری شده توسط رادار کاهش یابد . در نتیجه کالیبراسیون دقیق ما شاهد تصاویری با دقت اندازه گیری یکسان توسط رادار خواهیم بود .
در کالیبراسیون نسبی سعی بر افزایش دقت سیستم رادار است . در حالیکه در کالیبراسیون مطلق با نصب دستگاه هایی بر روی زمین انر؟ی سیگنال های بازتابیده شده از سطح اندازه گیری شده و پس از تقویت به سوی رادار فرستاده می شوند. رادار می تواند با استفاده از این مقادیر به مقدار حقیقی انر؟ی دست پیدا کند .ودر نتیجه استنباط دقیقتری ازسطح حاصل داشته باشد .

کاربردهای پیشرفته :

علا وه بر کسب واستفاده درست از اطلاعات کابرد های خاص رادار به شرح زیر می باشد :

نخست تکنولو؟ی تصویر سه بعدی (stereo image) می باشد . در این روش با پوشش دادن ناحیه تصویر با زوایای تابش متفاوت وهمچنین بهره گیری ازجهت های دید متفاوت یا مخالف و انطباق تصاویر ایجادشده می توان یک تصویر سه بعدی از ناحیه تصویر ایجاد کرد .در نتیجه اختلال هایی از قبیل سایه دارشدن بعضی نواحی برطرف گردیده وزمینه برای تحلیل دقیقتر تصاویر فراهم می گردد . این تکنولو؟ی در تحلیل تصاویر مناطق جنگلی و جغرافیایی وهمچنین نقشه برداری از عراضی کاربرد دارد .

از دیگر پیشرفت های حاصل شده می توان به قطبش سنجی (polqrimetry) اشاره کرد . در این روش امکان دریافت و ار سال سیگنال های مایکرویو به صورت ترکیبی از قطبیدگی افقی و عمودی وجود دارد . در نتیجه ما می توانیم چهار ترکیب HH VV VH HV را برای دریافت یا ارسال امواج در نظر بگیریم . بدین طریق با ایجاد تصویری با وی؟ گی های مختلف نتایج لازم جهت دستیابی به تصویر دقیقتر حاصل می گردد .

نتیجه :

با در نظر گرفتن شرایط فعلی که در دنیای امروز وجود دارد ، لزوم دستیابی به فناوری هایی از قبیل ساخت رادار ، وبه طور گسترده تر، سنجش از راه دور ، احساس می شود . لذا ابتدا بایستی به اطلاعات ترکیبی از رشته های مختلف ، نظیر زمین شناسی ، مخابرات ، هواشناسی و... ، دسترسی داشته باشیم ، تا بتوانیم به یک تکنولوﮋی کوچک اما پیچیده دست پیدا کنیم .
بنابراین با دسترسی به علوم جدید ، علاوه بر بالا بردن دید خود نسبت به مسائل علمی مختلف ، می توانیم در جهت پیشرفت علمی کشور عزیزمان گام برداریم.

=========================
منبع :مرکز سنجش از راه دور کانادا
www.ccrs.nrcan.gc.ca

منبع برداشت
  • Upvote 3

به اشتراک گذاشتن این پست


لینک به پست
اشتراک در سایت های دیگر
مقاله خوبي بود. خيلي دوست داشتم درباره اين موضوع بدانم. انشاالله كه كشورمان بتواند از تكنولوژي ها بدون كمك اجنبي جماعت داشته باشيم.

به اشتراک گذاشتن این پست


لینک به پست
اشتراک در سایت های دیگر

ایجاد یک حساب کاربری و یا به سیستم وارد شوید برای ارسال نظر

کاربر محترم برای ارسال نظر نیاز به یک حساب کاربری دارید.

ایجاد یک حساب کاربری

ثبت نام برای یک حساب کاربری جدید در انجمن ها بسیار ساده است!

ثبت نام کاربر جدید

ورود به حساب کاربری

در حال حاضر می خواهید به حساب کاربری خود وارد شوید؟ برای ورود کلیک کنید

ورود به سیستم

  • مرور توسط کاربر    0 کاربر

    هیچ کاربر عضوی،در حال مشاهده این صفحه نیست.